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ABSTRACT 

This Report is presented in two parts; Part I comprises 
Sections 1 and 2; Part It consists of Sections 3 through 5. 

In Section 1, a calculus for a Boolean function of a real 
variable is developed and utilized in the formation of a model 
of the s mpie Boolean machine.   In Section 2, rules of probabil- 
ity are developed for Boolean, events, and applied to the simple 
Boolean machine. 

In Section 3, a canonical representation of the Boolean 
system is developed and discussed.   Probability is introduced 
to the canonical representation of the simple Boolean system 
in the following Section, with a demonstration that the simple 
Boolean machine may be regarded as a discrete Markov pro- 
cess.   Attention is directed here to the solution of this process 
by matrices of generating functions.   Physical devices that may 
be used to analyze a Boolean system are discussed in Section 5, 
and a trinäry counter is analyzed with respect to fixe theory of 
Secficmi?. A and S. for ^vur^sses s-f iilustrai-ioii Äf the theory-. 
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SOME MATHEMATICAL. REMARKS ON THE BOOLEAN MACHINE 

Part I* 

1.    The Mathematical Boolean Function of a Real Independent Variable t 
and the Calculus of Such Functions 

First let us define the general Boolean function F(t) of a real independent 
variable t. 

Definition 1.1    F(t), where t lies in either a finite or an infinite interval, 
the range R of t, is said to be a general Boolean function or a GB-function if it 

has the following property. 

For every value of the real variable,   t in the range of definition F(t)   has 
one and only one of the abstract values, either 0 or I.   That is, 

w-rr-i  —   •'OJTJXI 
r-v je j.  _     r> 
II    JO!'      L    >C       11, n   1\ v- • -/ 

Let us now consider the definition of the sum, product and negation of 

GB - functions. 

-Befinit-iea-L.2 If there are two functions, F(t) and G(t). defined as in 
Definition 1.1 over the same range R of t, then the sum, product and negation 

functions are, respectively, 

F(t)+G(t), F(t) G(t)andF!(t) (1.2) 

for each real value of t within R.   The rules for negation, sum and product are 
given in Table 1. 

Table 1 

F(t) G(t) F'(t) F(t) + G(t) F(t)G(t) 
0 0 I 0 0 

0 1 • • I I 0 

I 0 ö I u 

I I 0 I I 

Author's Mote; Part I of the Report "Some Mathematical Remarks on the Boolean 
.Machine" is a corrected and revised copy of a report of the same part and title 
thai was previously submitted tö Computer Research Corporation on 1 August 1951. 
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Lemma 1.1     The sum, product and negation functions of GB-functions 

are GB-functions. 

Proof:   The lemma follows immediately from Table 1 and Definition 1.1. 

Let us now define the left and right limits of a GB-function. 

Definition 1.3    The left limit 

F(t -) =    Lim   F(t - e) (1.3) 

of a GB-functipn F(t) is said to exist for t = t    if there exists 6 > 0 such that 

FCto-0 = F(t-5) 

for all c  where 6 > e > 0.   If F(t -) exists, then = 

o j 

F(tQ-j = F(tQ- 6X) 

for any 5. where 6^-6, > 0.   The condition for existence and the definition Of a 

right limit are had if in the above the word "left" is replaced by sright" and minus 
sighs are replaced by plus signs. 

Definition 1.4      Suppose F(f) is a GB-function over the range R = (a, b) j| 
where a^ t ^ b.   If F(t -) exists for t e R and 

then F(t) is said to be left continuous at the point t = t .   If F(t +) exists and 

F(t0+) = F(tQ), 

then F(t) is right continuous at the point t = t .   If F(t) is both left and right con- 

tinuous at the point t = t ,   then F(t) is continuous at the point t = t   or t   is a 

point of continuity of the GB-function F(t).   Suppose F(t_—) and F(t_+) exist at 
'——       — - - - *J - - \J - 

t = t , then the point t   is said to be a point of simple discontinuity of the 

GB-function F(t) if t   is not a point of continuity. 

Definition 1.5      If the range R of t is finite, then F(t) is defined to 
be a B-function if it is a BG-function and every point t of R is a point of con- 

tinuity except possibly for, at most, a finite set of points of simple discontinuity 
(including the end points of the range) as defined in Definition 1.4.   If R is an 

-2- 
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infinite range, then F(t) is a B-function if for every subinterval of R it is con- 
tinuous everywhere except possibly for, at most, a finite set of points of 

simple discontinuity. 

Definition 1.6    A B-function, as defined in Definition 1.5, is defined 

to be a B-function if F(t) is right continuous for all values of t. 

Definition 1.7    A B-function is defined to be a B^-function if F(t) is 

left continuous for all values of t where t R. 

Definition 1.8    A B-function F(t) is a BQ-function if for every possible 

point t = t   of simple discontinuity, F(t) is neither right nor left continuous at 

t = t_. o : c        . 

Definition 1.9    Suppöse F(t) is a GB-function and that t = tQ Is a point 

Of" simple discontinuity Of *;(t).   Then t_ is "called a right jump'point of Fft)if 

-   • = O O '   *L       * *    * 

F(tQ^) = 0,   then F(y = I,   ; 

and t = t   is called a right up jump point of F(t), otherwise tQ is a right down 

Jump point.   Left jump, left up or down jump, points are defiaed similarly. 
If F(t) is neither left nor right continuous at t = t , theh t   is a spike point. 

If t   is ä spike point and 

*<\T> = F^o+) = °* c 

then F(t ) = I and t = tQ is called an up spike point of F(t), otherwise tQ isa 

down spike point. 

From Petition« 1J»?,1.7* .1.8 and 1.9, the following theorem is clearly true: 

Theorem 1.1    The only possible points of simple discontinuity of B« 

B or B  functions are, respectively, left jump points, right jssmp pointr or 

spike points. 

The following theorem is clearly true by Lemma 1.1 and jögfzxiitions 1.3, 

1.6, 1.7 and I.S. 
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Theorem 1.2      The sum, product and negation functions of B,  B^, Br 

or B   functions are,  respectively,  B,  B-,  B   or B   functions. 

From Theorem 1.2 and Definition 1.3 we clearly have the following lemma: 

Lemma 1.2      If F(t) and G(t) are B-functions, then 

Urn^ |F(t - €) + G(t - 0| = F(t-) + G(t-) 

Urn^ |F(t + €) + G(t + 6)| = P(t+) + G(t+) 

Urn^ |F(t - €) F(t - c) | = F(t-) G(t-) 

Uni |F(t + €) G(=t + e) | = F(t+) G(t+| j 

e"j^   F«(t - c) = F'(t-)     * 

and 

el^n   F'(t + c) = F'(t+) 

The next theorem will show that the left or right limit operation transforms 

a B-function of pne type intoa B-function of another type. 

, Theorem 1.3,      If F(t) is a B-r~ function, then G-(.t) = F(t-) is a Bg-function. 

-4- 
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If F(t) is a. B-function, then G(t) = F(t+) is a B^-function.   If F(t) is a BQ function, 

then | 
F(t-) = F(t+) = I all t e R 

if F(t) has down spikes, or j 
F(t-) = F(t+) = 0 all t e R i 

if F(t) has up spikes. 

Proof;   K F(t) is a B-function, suppose t    is a point of simple discon- 
I 

tinuity.   By Definitions 1.4 and 1.3 there then exists 6 > o such that i 

F(t0 + 5) = F(tQ) = F(tQ + e) 

and 
F(tö - 5} = F(t0 - e) 

all e such, that o < e < 5.  Thus for e ßuch that 5 > e > o we have 

y 



nence 

G(t0+) = F(to) 

and G(t) has a right limit at t = t   ,  a right jump point of F(t).   Also for all €,  such 

G(t0-:«)=F[(to- 6])-]  =F(to-61) = F(to-)=G(to)       . 

Therefore 

and G(t) ig left continuous at t s t      if t   is a point of continuity of F(t),  then by 

an  ax CUMAV «+•  äiTvi-ii&Tj** -j-^ iH^~ s.jgc^fÄ._ 

G(t6-) = G(tö)^G(tö+)       .- 

Hence t. is also point öf continuity öf G(t).   We have satisfied the conditions for 

G(t) = F(t—) to be a. B.-function, thus the first part of the theorem is proved.   The 

rest bf the theorem follows by a similar argument. 

If one thihks of the space of all B.-functions or all B-^functions, then 

Theorem4*3 establishes a one-to-one correspondence between the elements of the 
two. Spaces; ffiöreöyei?, Theöre*n 1.2 and Lemma 1.2 provide the machinery to 
show that this mapping is an algebraically isomofphic mapping.   A further study 

of the various properties of these function spaces will be made at a later date 
(these function spaces form interesting topological rings). 

Theorem 1.4      If F(tJ is a B^ function, the transformations 

driF(t) = F(t-)F'(t) 

^.+ Ftt>=FHHF(i) (1.4) 

*t F(t) = d^ F(tJ + dr + F(f) = F(t-J  & F(t)       , 

where $ is the Boolean ring Swmv map F(f) onto B. -fürtciiöös.   The operators d    , 

d     and d   mapy r^SpeefiVeiyV only the down jump pöiöfs öf F(t) into Up spikes, 

-'5- 
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only the up jump points of F(t) into up spikes and only the jump points cf F(t) into 

up spikes.   If F(t) is a B^-function,  then the transformations 

dj?_F(t) = F(t) F (t+) 

di+F(t) = F(t-)F(t) (1.5) 

d^ft) = d^Fft) + di+F(t) = F(t) © F(t+) 

i 
map F(t) onto B   -functions in a manner Corresponding to the mappings (1.4). } 

Proof;   By Theorem 1*3 F(t'), F(t+) and F(t-) are B-functions.   j^ience from 
Theorem 1 = 2.  d_ F(t),  d_aF(t) and d^F(t) are B-functions and by Definition 1.2, * v- r i i ^ 
Lemma 1.2 and Definition 1.9 the only points of discontinuity are spike points. ; 

Thus d.._ F.(ft)f d   ,F(:t) and d   F(t) are B   -funetier.Si   The remainder of the i 

theorem is clearly evident. ] 

The Boolean ring plus sign © ,- mentioned in the definition of d   F(t) and 

d.F(t) in Theqrem 1,4? the product sign•<(-*-) and ihs sign + are related by the = 

following rules: "i 

F(t) + G(t) = F(t) © G(t) © F(t) G(t) j 

F(t) © G(t) = F'.(t) G(t) + F(t) G»(t) (1.6) \ 
and . .) 

F'(t) = I ffi F(t)      . f 

where F(t) and G(t) are GB-functions.   It can be shown that a Boolean algebra 

under the operations + and (•) is a Boolean ring under the operations © and (•). 
Under the operation © , the Boolean ring is an additive group. 

Henceforth,  lei us denote d„, d_x,   d , by d,  d+,  d—respectively, and let us 

deal with B -functions and B-functions unless otherwise specified.   Moreover, let 

us denote B -functions by capital latin letters and B -functions by small Latin r a 
letters.   By Theorem 1.3 for any result that iä developed for B>-functions there 

will be ä corresponding, result for Bi-funeiiöfts. c 

-6- 



From Theorem 1.4 we see that d,  d+ and d- are operators which map 
B -functions onto B -functions.   Let us now consider the inverse images of these r o 
mappings.   Suppose first we are given the operator equation 

dX(t)=p(t.) (i.7) 

where p(t) is a B -function with up spike points at only the points t   , t., , t  2 >   ... 

t..,   ....   We wish to know all the B -functions X(t) which satisfy (1.7) if any; 

those functions X(t) which satisfy (1.7) are solutions of the operator equation (1.7) 
or in this particular case,  what might be called integrals of p(t)<   From 
Theorem 1.4, two solutions that satisfy (1.7) are 

;     X(t) = S(t"): or I©   S(t) c(i'S) 

where S(t) has only down jump points for t = t   , t±2 ,  ... t, _.,  ...  and only up 

jump points for t = t,, , t,, ,-  . < * *±2'+l-'  *' *'   ^ orc*ei*to snow that the solutions, 

given by (1.8), are the only B -functions which satisfy.(1.7.) let us consider the 

cfollowifig lemma: 

equation 

are 

or 

Lemma 1.3      The ohiy B - and R -functions which satisfy the Operator 

dX(t) = 0 all teR (1.9) 

X(t) = 0 all teR 

I all teR 

Proof:   By Theorem 1.4, Equation (1.9) may be written as . 

X(t) © X(t-) = 0 all teR 
or 

X(f) = X(t-) all t«R 

But this means that X(t) is a left continuous function.   But by hypothesis if X(t) is 

a B -function, it is right continuous.   Thus X(t) is continuous at every point teR. 

Suppose X(t) 4 0 all teR  and X(t) ^ I all teR, then by Theorem 1.1, there must 
exist ä right jump point at some point    t_eR, which is a contradiction to the 

-7- 



continuity of X(t).   If X(t) is a B  -function, then by Theorem 1.3 j 

X(t) = X(t-) = I         all teR ; 
or 

= 0 all teR 

Hence Lemma is proved. 

If we had not restricted Lemma 1.3 to B   and B   functions,  we would have found ] 

that every B.-function satisfies (1.9).   This is true since every B„ -function X(t) is > 
X.                                                                                                                                                                                                          X- at 

I left continuous, thereby satisfying (1.9) identically. j 

Theorem 1.5       The only B -functions Which satisfy the operator equation J 
' '] 

are those given by (1.8).   The only B -functions that satisfy (1.7) are 1 
"1 

X(t)=p(t) j 
and                                                   ;~-~~~-~ -------             -. a 

x(t) = i e p(t)       .-                c ] 
If p(t) in (1.7) has at least one up spike point, then there are no B.-functions which 

Proof;   Suppose there exists a B -^function F(t) other than X(t) = S(t) or \ 

I © S(t) which satisfies (1*7).   Then               < 

\    X(t) = p(t)          and       dF(t) = p(t) 
or 

Thus 

dX(t) © dF(t) = p(t) © p(t) = 0 all teR 

0 = [X(t) © X(t-)]   ©   [F(t) © F(t-)] 
c 

= [F(t) © X(t)]    ©    [F(t-) © X(t-)] 

"= [F(t) © X(tfl   ©   iirn^ JF(f- e) + X(t- c)] 

by Lemma 1.2*   Therefore by (1.4) we have 

d[F(t) © X(t)] = 0        all teR, 

which by' Lemmiä1.3 and .-Theorem 1,2 implies •"   c 

F(t) © X(t) = 0 all teR , if 
ii 

or I all teR . | 
c -8- 
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Hence 

F(t) = X(t) or       I (p X(t) all teR 

which verifies the uniqueness of the B  -function solutions,  given by (1.8).   The 

third sentence of the theorem is evident from the sentence preceeding the theorem. 
The second statement of the theorem follows from the evident identities, 

dp(t) = p(t) 

and 
d(l © p(.t)j = p(t) 

If p(t) = 0 for t ^ Ö and if for t'% ö, p(t) has up spike points, then the Operator 
equation (1.7) is somewhat analogous to a simple ordinary first order differential 

equation 

gW    saJi\ ax • ' 

where T(6) is the initial condition.  If X(O-) is given äs an initial condition, then by 
Theorem 1.5, (1,7) has aluMque Solution &{i)forjtjtut andthere ärf only two 

possible solutions which are Br-functions.   Let us pursue this analogy further in 

the following theorem. 

Theorem 1.6      Suppose p(t) aiid q(t) äre B0-ftinctiöhS sucih that for t < 0, 

p(t) = q(t) = 0, and for t > 0 that p(t) arid q(t) possess Spike points.   Then the 

operator equation 

dX(t) © p(t) X(t-) = q(t) * (1-16) 

where initially X(O-) is either 0 or I, has a unique solution 3(f) for t s&0 which is 

: a B -function.  The equation has two and only two possible B^function solutions, 

Aanapdirtef ©rifclrely on. the Value Of X(0—)* 

Proof:   Let us construct a B^-functioh S(t) which satisfies (L10).  Let 

S(tJ*X(<H   for t<0, 

and for i > 0 let S(t) be defined by Table I* 

-9- 
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Table 2 
     - 

p(t) q(t) S(t-) S(t) 

0 0 0 0 

0 0 I I 

0 I 0 I 

0 I I 0 

I 0 0 0 

I 0 I :0 
' I 0 I 

I I I I 

It is -clear froffl the "definition öf the B  -function S(t) that S(t) has jump points at a 

point t only when t ig not a_ spike point of p(=±);   i is a spike ^point of q(=i) and 

S(t-) = 0,  or t is a spike point of p(t),   t is not a spike point of" q(t) and S(t—) = I 

err t is a spike point öf both p(t) and q(t) and S(t—) = 0.   It is further evident that 

the B -function S(t) satisfies (1.10) identically. 

Let us consider the uniqueness of the solution to (1.10) that was constructed 

above*   Suppose P(t), a B -function, satisfies (1.1Ö) as weli as S(t), where for 

t < 0, F(t) is defined by F(t) = X(O-), the initial condition.   Thus we have 

dF(t| © p(t) F(t-) = q(t) 

and 

dS(t) © p(t) S(t-) = q(t) 

for all t€R.   Adding these two expressions, we obtain 

d[F(t) ® S(t)] +P(t) [F(t-) © S(t-)] = 0 (1.11) 

for all t€R and where F(t) = S(t) for t < 0.   if we show that Y(.t) = 0 for all tcR is 

t 

me umy ry *iünciion scuüxiön xo xne operator equation 

dY(t) @ i>(t) Y(t-) = 0 (1.12) 

where initially Y(t) = 0 for t < 0, then by (1.11) F(i) = S(t) for all t«R and the 

theorem is proved.   Suppose the: contrary, that Y(t) ^ 0 for all t €R* then there 

exists ä point f.. öf simple discohtih such that for all t < tQ, Y(t) = 0.   The 

10- 

j 
J 

J 

I' 
!> 



point t   must be an up jump point since the solution is to be a B -function.   Thus 

and 
Y(V-) = 0 

Y(*o) = 1       ' 

Substituting these values into the left of (1.12) we have 

dY(tQ) + p(tQ) Y(tQ-) = I j 

which is a contradiction.   Hence theorem is proved. { 
' 1 

if in the operator equation (1.10) we let 1 
j 

b(t) = q(t)   : 1 
and 

then (I.i0) becomes 

Qb(t) = b(t)  + p(t), 

or 

d^Sr/tl" Hf    ih/ti   ffi       bit« i    Xf't—i  =  bf'ti 

it(f^i>(fj ^|t^^tr^^MjTö(t==r -—~       :    \*-*^"~      f 

From (1.6) we may rewrite (1.13) as 

X(t) * b(t) X'(t-) + ob'(t) X(t-) . (1.14) 

Equation (1.10) and its equivalent (1.14) may be analysed approximately by ä 

physical device called a two input flip flop (for example, the Ecclos -Jordan flip 

flop).   The flip flop is a bistable state devise which is triggered by pulses, the 

physical approximation to a spike.   In this sense Equation (1.14) may be termed 

the ideal flip-flop equation with the two B   function inputs b(t) and   b(t). 

Let us now define a special class of B   functions,  called the B (a) functions. 

Definition 1.7      A B (&) function is a B -function F(t) over the infinite 

range oo < t <«© which has jump points only at the points 

a,  asbT,   ä±2-r, ...-,; a±nr, ... 

(n = 0, 1,  2,  3, .. i).   The constant a is called the phase of F(t) and T is the 

translation period of F(t). 

-11- 
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and 

From Definition L7 the following lemma is evident. 

Lemma 1.4-     If 0 < ß < T, then the B (ß)-function F(t) is a BT(ß + m)- 

function for n = 0, ±1, ±2,. ..  and conversely,  ß is called the residual phase of F(t). 

Let us consider the two B   /->{Q) functions a(t) and   a(t) which have the 
T/2

X
  ' v ' o  s ' 

special properties: 

a(t) = Qa(t) = 0   for t    = (2n)T/2 < t •$ (2n + 1) T/2 (1.15) 

(n = 0,1, 2,...), 

a(t) = 0 or I ] 
V   for (2n_+_i) T/2^ t < (2n + 2) T/2 - t     , 

=    „V+\  =  (Irtr. TI 

(n = 0,1, 2,...), 

a(t) = 0 or l\ 
%       TOT" - «»^ X <  U 

Qa(t)=0orlj 

- JSfcxw consider tfiü operator equätiörT 

X(t) = d_[a(t)] X'(t-) + d'^aft)] X(t-) (1.16) 

where initially X(O-) = S(O-).   (1.16) is the ideal flip flop equation (1.14) where one 

input consists of up spikes occurring at the down jump points of a(t) and the other 

input consists of up spikes occurring at the down jump points of   a-(t). 

Lemma 1.5       The unique solution S(t) of (1.16) is a B (O)-function which 

as well is the unique solution of the Boolean difference equation 

Y(t) = a(t - T/2)a'(t)Y'(t - T/2), + [^{t - T/2) Qa(t - T/2)]' Y(t - T/2)    (1.17) 

for t ^ T/2 where the initial condition of (1.17) is Y(t) = S(t) for 0< t< T/2, 

Proof:   That the solution of (1.16) is a B(0)-funetion is evident from (1.15) 

and Theorem 1.6,   To show that S(t) satisfies (1.17) consider the following two cases: 

Case If =       t. < t < tj + T/2      (i = 1» 2, 3,... ) 

1 

a: 

t 

For this case a(t) = Qa(t) = O.and from (1.17) [ 

-12- 
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Y(t) = a(t - T/2) Y'(t - T/2) + oa'(t - T/2) Y(t - T/Z)     . (1.18) 

But also for this range of t 

a(t - T/2) = a(t.-) 

S(t - T/2) = S(t.-) 

tt(*i) = 0tt(t) = o — — 

and also from (1.16) 

S|t.) = a(t.-) S'(tr) +-0a'(t.-) S(t±-) .     ~ 

Hence 

S(t) = o(t - T/Z) S«(t - T/Z) + Qo'(t - T/Z) S(t - T/Z)    . (1.19) 

Prom (1.19) and (1.18) we see that S(t) satisfies (1,17) when t^ t < tj + T/2. 

Case II:        ^ + T/Z < t < t.  x       (i = 0, 1, Z,...) 

IZFpr tMs^case   .   --.-^_^---_-_r-=-_^=^_-.!-_-_- 

a(t - T/Z) = 0 

and 

thus 

Qa(t - T/Z) = 0    , 

Y(t) = Y(t - T/Z) (1.Z0) 

But since S(t) is a B (O)-function 

S(i) = S(t - T/Z)     . (1.21} 

From (1.Z0) and (1.21) we see thai S(t) satisfies (1.17) v/hen 

t- + T/2< t <t.  ,.   From cases I and II we see that S(t), the solution of (1.16) is 

a solution of (1.17) for t ^ T/2.   The uniqueness of the solution may he established 

in a manner similar to the uniqueness-proof made in the next theorem. 

Let us now define the so-called clock function B(t). 

Definition 1.8      The clock function. B(t) is a B   /2(0)-fünetiön which has 

the following properties; 

-13- 



E(t) = 1      for      -ao< t < 0 

= 0      for t. = (2i) T/2< t < (2i + i) T/Z 

= I      for (Zi + 1) T/2^ t <(2i + 2) T/2 = t. + 1 

Now consider the B (0) functions ß(t) and    ß(t) with the properties: 

and 

ß(t) = 0 or I 

,p(t) = 0 or I 

p(t) = 0 or I 

,ß(t) = 0 or I 

for all i,-co< t < 0 (1.22) 

.   for t. = i* <£ t < (i + 1)T a i,., 

where i = Ö, 1, Zt...   From Definition 1*8 and (1.2Z) it is clearly evident that 

E(t)ß(t) and E(t)Qß(t) have the Same properties äS ä(t) and öa(t')»  given by (IäS)* 

Moreoveri by Lemma 1.6 the solution £>(t) Of 

Xf'ti =  d    lE/t*  P.J'ti !   X'*t—! + d5  IE'TJ   Sifti   Xji=i l   t iU^J I 

where the initial Condition is. X(0-)» is also the Solution öf 
Y(t) * E(t - r/2j ß(t - T/2) ßg(t) p(ifl* Y'(t -t/zj 

+ CE(t-i-/z)öß(t-T/2){l(t)6ß(t)}]'1f(.t-T/z)     s (1,24) 

for t ^ r/z where initially Y(t) * S(t) when Q4t< f/t< 

Theorem 1.7      The B (O)-function S(t) Which is the unique solution of 

(1.Z3) and (1.24) is also the unique solution of the Boolean difference equation 

Z(t) = ß(t - T) Z'(t - T) + ößr(t - T) Z(t - f) ;(1.2S) 

for: t »T where initially Z(t) = S(t) when 04 t < T and p^t)* öß(t) are BT(0) 

functions, defined by (1*22), 

Prööfi Ftfom Definition 1*8 we have 

S(t) * E% - T/ZJ   whets t ^ ft, (I*zty> 

£fow ffront (1*24) whes t ^ *> 

-14- 
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S(t) = ß(t - T/2) E'(t) S'(t - T/2) + £oß(t - T/2) E'(t)] ' S(t - T/2) 

= ß(t - T/2) E'(t){ [p(t - T) E'(t - T/2)] ' S'(t - T) + Qß(t - T/2) E'(t - T/2) S(t - T) J 

+ [o(3(t - T/2) E'(t)] ' {p(t - T) E'(t - T/2) S»(t - T) + foP(t ~ T) E'(t - T/2)] ' S(t - T)). 

If we expand and use (1.26) this becomes . 

S(t) = p(t- T/2) E'(t) S'(t-T)4 ß(t-r) E'(t-T/2) S'(t-T) I 

•=/«/• • ' 1 
+ QP'^ "" T/Z> S(t ^ T/2) S(t - T) , (1*27) 3 

Consider the' following two regions: - I 
i 

Kegloii if     t,4§ t < t. + T/2 ,        (i = 1,2, $,t t.) J 

In this region 

= Ö .*.. .... * *1 
E(t - T) = I 
wrfc —   i-/ GJ  —   pf fc = Ti 

and 

- < jatt = x/2L). = pet"'= T.J =.. .-1 

Thus by (1.27) ?\ 

S£t) = p(t - T/2) S'(t - T) + oß»(t - T/2) S(t - T) • j 

= ß(t - T) S'(t - T) +    Ö'(t - T) S(t - T)       , [ 
u t 

Hence in this region S(t) satisfies (1.25). 

Region II:    t± -f- T/2 < t < t.+1     - (i = 1, Z, 5,..«) 

In this region E(t) = I    and E(t - T) = 0.   Thus by (1.27) 

S(t) = PC- T) S'(t - T; + 0ß'(t - T) S(t - T) + QP<(t - T) Qp'(t - T) S(t - T)    C 

=  ß(t - T) S'(t - T) + 0P»(t ^ T) S(t - T)   [I + oß'(t - T)J 

=  ß(t ^ Tj S'(t - T? +öß*(t - T) S(t - T) . 

Hence in this region S(i) satisfies (1.25).   Since S(t) satisfies (1.25) in Regions I and 
o c c 

II, if satisfies (1.25) for t 5*-T.   For the uniqueness of the solution S(t) note by (1.6) 
that (1.25) may be rewritten ää 

2(t + T> = p;(ty # to © öß#3 z(t> ® 2«y £i.zay 

-15- 
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for t > 0.   Suppose there is another solution T(t) with initial condition T(t) = S(t) 

for 0 ^ t < T which also satisfies (1.28).   Also let L(t) = S(t)^ + T(t), then by (1.28) 
we have the difference equation 

L(t + T) =  [ß(t) 0 Qp(t) @ I] L(t) (1.29) 

with initial condition L(t) = 0 for 0 ^ t < T.   Consider any arbitrary point t   where 
0 < t   < T.   Then by (1.29) L(t   + T) = 0.   Suppose for the purposes of induction 

that D(t   + n-r) = G, then We have by (1.29) L(t    + (n+l)T) = 0,   Hence the induction 

is complete and L(t   + nr) = 0 for all n (n; = 0, 1,2,...).   Since t   Was arbitrary for 

0^ t   < t, we thus have L(.t) = 0 for all t, t £ 0.   Hence S(t) = T(t) för all t, t ^0, 

and the solution S(t) is unique*   Hence theorem is proved. 

Equation (1.25) is called the Boolean difference equation of the clocked flip 
JÜ1 OJ It     3'CV   1—    1 3 J: j.    _x»   n/ii       xi__    _J1._x.l.   X* rw4.J««     4-Ü>*   -^U-»#^^i^«l    X"1-S,-^  -Pl^i^ 
XUUp.      priUCC   p,CJJ   X»   tnucpcuuCJIl   K»X   XLfl-X-i}     flic   CXöCK  xixxxv; x*iv/xxi lire  piljoiv-ax ctxj»  ti«p 

which analyzes this equation may be considered äs a box with two input and two 
...  • ,4,   try   */4»   4—.    *4=%, i'v» -''-.l-.t.-.   .-.s-*   . *• x  jff x.i__   _i _j i   iri    X"i \   r.._ _x.i  
uucpui  lz-J'i  V**/   •*•      vi uxnai iij   a v axxauxc  ao   cixx v/ui^/ui.  ix u-ui   liiC   Jpxi¥ bit cl-i  ixip   lj.'\J^Jj   XLilXv«.LXUxJLc 

all of the same nature, B (0) functions*   Since BT(0) functions F(t) have the property 

F(t) = F(-t.) for t, ^ t < t, + - (1.30J 

where t. is a possible jump point,  (1.25) may be considered entirely in terms of its 

jump points as ^ 

Z(ty = P(VJ) z'tv.!*. + 0P'(Vl> Z<W '   (i = -1* 2' 3" * •) *        ^-31> 

where initially Z{t ) = S(t ) (either 0 or I).   Equation (1.31) may also be called the 

state equation of the clocked flip flop since by (1.30) the value or state of F(t) is 
completely determined by F(t.)t for an interval of at least T where t. is a possible 

jump point.   If we let 

Zf = Zftj),. ß(y = ß. and oß(t.> = oPf £1.32) 

for i = 0,1, 2,..., then (1.31) becomes 

Z£ = h-1 *W + o%-ir Zi-1     ^ s *' Z' - > <ii33> 

where initially Z   = (either 0 or. I).  ßquatiön (1.33) is the state equation of the 
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clocked flip flop where the dependence on t has been removed;   (1.33) is a discreet 

Boolean difference equation.   Let us now consider a general system of Boolean 

difference equations which reduce to a set of equations of the type of (1.33). 

Let Z.^' (j = 1,...    N) be a set of dependent functions defined as in (1,32). 

Let w.    ' (k = ls, «,    M) be a set of independent functions»   °iYen for i = 0S 1, 2»» .»a 

Now consider the system of Boolean difference equations 

z.+«) „ £U) (ZU),  z.<2),... Z.(N). Ui(l)_ „.^....„.(M), (1<34) 

where (j = 1,...    N),, "(i = 0,1* 2,...) and initially Z^' = (either 0 or I) for 

j = l,v .    N.   By de Morgan's theorem (see Section 2) (1*34) may be written as 

i-,\       t-.\ ...Ml .n_I\     -/i + n _ ms      (i\ (m\. _, 
i+1     ~ "     *   i    '*""       i        '     i       ' *''   i     '    i    '  *'"   i      '    i 

-iA\i ._m.       _/.i^.i\   _fi4-n      •_ /N.\      /n ; /MIL _      .. _,.. 

(j) 
o 

'J'  QTIITJ      P.      -»•"  oyo  i-nr1or»onrion+  n-f 9',»«'' 

^.- < ..<_ 
IV !"SP> TS'   f 7  =    • ..      .        PI!.    '7   =   II-   i« S--, i-    iriiT.Tä I itr  ./•#   »"»   =:   I PTmpr  n CTT*   ir Tm- T   =    • -. 

and both ß.-^.i     and „ßj„^     are.independent of ZAJ' arid are in terms of sums and 

(i)       hV      (k) (k)f 

products of the remaining variables Z.u'f  Z.VJ' , «> ' and coA '   for (j = 1,*»« ; N) 

and (k = 1,...    M)*   Equations (1.33) and (1.35) show that the simple Boolean system, 

gi/en in (1.34) may be analysed physically by ä machine consisting of N clocked 

flip flops for the dependent variables and suitable physical devices for producing 
c 

the sum and product of the various variables.   Such a machine will be called the 

simple Boolean machine* 

The best examples of simple Boolean machines known to this author are the 

Maddidas and (or) universal computers being built or considered by Computer 

Research Corporation, Northrop Aircraft Inc, Hughes Aircraft, Cäl. Tech.-, a**d 
c 

in existence today may be interpreted as simple Boolean machines i£ the Various 

elements of these machines are regarded' in an appropriate manner, but this has 

yet to- be proved* , 

There' are more advanced' Boolean systems of difference equations (many of' 

which can be shown to reduce to the simple Boolean machine)' which couM be 

-17- 
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£.      ine introaaction ox rroDaoriTcy ineory into trie xsöaxeäs öysxexn 

Let us suppose we have n Boolean Variables a*,... a    where each may 

have either the value 0' or I.   Now consider any function 

x - x^djt,.ct2,....-ceft)' (2.1) 

• "n - J - .- -    -        —      -r 

-Sft- 

A£    «nil «I C 

analyzed physically by what we will denote generally by Boolean machines.   The 
study of more advanced systems will be our goal in part for the future as well as 

the study of the inherent physical problems of the Boolean machine. 

By stating that a Boolean machine is the analyzer of a Boolean system 
(a mathematical system)* we are saying that the processes of the machine and 

the system are analogues of one another.   Therefore we may say that a Boolean 
machine is an analogue to a Boolean system and vice versa.   This statement 
achieves an important conceptual step in the subject öf digital computing machines* 
The Boolean system when regarded as an idealized mathematical model of a 
Boolean machine should do much to unify the different design techniques and 
physical devices involved in the many different digital computing machines that 

have and will be Considered.-   The different Boolean systems which Can be \\ 
physically realized afford ä hierarchy of new Boolean machines.   When the 
physical principles of a Boolean machine are considered in Conjunction with the 
mathematical principles of its model, the Boolean system, a general physical 

theory of the Boolean machine should be the ultimate result. 

In concluding this sect-ion? let us consider some examples of physical jpjj 
approximations to E^ff) fuh^fiOha^^plsr^Simations tö such fühcfiöhä OCCür äs a 
sequence of high Or low voltages or currents* a sequence of magnetized Or 
unmagnetized spots on a magnetizable surface» a sequence of white or black, 

punched or unpunehed spots on paper or other material, a sequence of charged 
or uncharged spots On the surface of a dielectric, as a sequence of two different 
materials stacked one upon the other, and so forth.   The physical devices in a 
physical system which produce, which are acted upon or algebraically combine, 
both statically and dynamically, the physical B (0) functions make up the 
Boolean machine.   In the next section, We will introduce probability theory to 
the Boolean system. 

«r 

f. 

'I 
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|x|  - I (aj, a2,. . . an) : X(a1,a2>„. . an) = 1^ (2.2) 

be the set of n-tuples (a,, a-,. .. a ) such that x(a,, a,,. .. a  ) = I. 

Lemma 2.1       If x and y are functions of a,,... an,  as given by (2.1), then 

|x|fl|y| = |xy| (2.3) 

where SI is the set intersection operation and the bars are defined by (2.2) 

Proof;   By (2.2) we have 

xy = Uky fci2*... ctn) : x(a1i. .. än) y^,... an) = I j 

and 

| x j Ö. | y | =i(ava^ ..ttfiJ : «(eji.. .ttHJ = ijst {(-ßj,... pfl) : yfß^ ., ßM) = i]. 

Now suppose the n-tuple (j-ti... 7ft) is contained in X SL y or 

(T^-.-Tji)       |x[ Jl lyi 

and hence 

which implies 

*(?!*. .-TflJ; = I = 7(71*.-^) 

x(71...-7n)^y(71.---7tI) = i   : 

fx|. il -|yj c_|xy| 

where C stands for set inclusion.   On the other hand,  suppose 

(6r.%.6n)  6  M 
then 

x(61,...6n)y(61,...8n) = I 

and by Table 3 we have 

x auic   -^ 

X y xy x + y 

Ö 0 0 0 

G i ö t 
i :   ö a i 
i r 

-I 
T 

• 
I 

i 
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x(6r... 6n) = I    and    y(61,... 6n) = I 

which implies 

(6r...8n)  €  |x| ß  |yj 

which in turn implies 

l«y| c |x| a |y| (2.5) 

Combining (2.4) and (2. 5) we see that (2.3) is true.   Hence lemma is proved. 

Lemma 2.2       If x and y are functions of a.,... a  ,  as given by (2.1),  then 

1*1 V  |y| = |x+y| , (2.6) 

where Ij is the set union operation and the bars are defined by (2.2)r 

Proof:   By (2.2) we have 

1*1 1)" iyi = \ (ä!»" •°-IJ • «(äj....^) .= Ij:rÜTuiaj... .ßn) : y(ßj»*... ph) = 1/ 

and 

|x + y|  = U;cL1i...än) : x(äiSi..äri) +y(a1i...ttn) = Ij 

Suppose for the n-tuple (7,».. -7-.) we have 

then 

ton . .7-*   e   Ix + v! 
•\~f   [•- "    »"TV*" "t —   -  w    1    - 

xfry • • Tn) + y(yV' • • Tn) = l> 

which by Table 3 obtains: 

which implies 

or 

which implies 

ör 

which implies 

x(Ti •"• • • Tj = I    and    y(7,,... T ) = 0 

(7r...Tn) € 1*1* 1*1 V |y| 

x(Ti». •". 7n) = 0    and    y(7l,... Th) = I 
c 

(Yr...7n) *   |y|c   |x|V |y| 

Xfr 1»*' * TftJ = I    and    y*Tl' * * * V = * 

/>v 1/    \    c     lirl 9P   lirl 
" •' I"*" " 'n'-       !": -   '"/ '• 
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•j 

£-y (A), (^) and (C) we thus have 

|x + y| c   |x| tf |y|  . (2.7) 

Now suppose that 

then 

or 

or 

By Table 3 we have 

(5lf...6n) c |x| V |y| 

x(61,... 5n) = I and y(6j,... 6n) = 0 

x(51,... 6A) = 0 and yfSj,... 6n) = I 

x(61__,..'. 6 )• = I and yföj,... 6n) = I 

(D) 

(E) 

(F) 

x(5,,.,.6J +y(6i,...6J = I 
X XI X XX 

for (D)*  (S) and (F) which implies 

(51,...8n)  €   |x + y| 

or 
1*1 V  |y| c   |.x + y|      .   ;

= (2.8) 

If we combine (2.7) and (2.8), we see that (2.6) is true.   Hence lemma is proved. 

Let us call the total set of n-tuples,  (a.,... a ), SL .   Then 
X II c 

SI = fC11!»---^)) - {(0....0.0),  (0,... 0,1),..., (I,... I, I) | (2.9) 

The function of the type,  given by (2.1),  which is I for every element of 

fl. is I, thus 

|l| = St  . (2.10) 

Let us consider the complementary set of |x| which we will denote by 

|x|   .   By (2.9) we have 

[x]~=   Sl-\x\ = Ä-f(alf...on) : X(alt...an) = ij 

= {(ßr.. ,'ßn)-.: x(ßir .. ßn) = O.j = ((ßr... ßn) : x\py.., ßn) = i} 

=   x- 

•21- 
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Thus 

R =  |x'|     . (2.H) 

From (2.10) and (2.11) we have 

|0 | = 0 (2.12) 

• • **v- -*. w    tilt.   «-» w i. *w*   \_r-i   ti-w    i -^ii-   u*«o Ag—Aütn-. s-    tiii-w   -_ -ii^-*-^    vv v - 

By de Morgan's theorem, 

x(cu,. . . a  ) = x(0,. . . 0. 0) a'j . . . a^^   a'n 

+ x(0,. . I 0, 0) a1. .. . a1    i   an 

+ . . .   + X(L.. . I, I) a,a2, . . °-n_i °-n    » 

(1) A. N. Kolmogorov,  Theory of Probability,  Chelsea (1950). 
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we see that there is a one-to-one correspondence between every subset of ii 

and every Boolean function x of the n-Boolean variables a,,... a   .   Or 

specifically 
c 

x «-*••! x | (2=13) 

as defined by (2.2).   From Lemma 2.1, Lemma 2.2,  (2.10),  (2.11),  (2.12) and 
(O-   \%\   -xxjck  VipTTO   -fV»o  fhonvorn • *   .   _ 

Theorem 2.1       The algebra of the 2    -Boolean functions of the n-Boolean 

variables a.,... a   is algebraically isomorphic to the algebra/jT of all subsets of 

& = ((ai" ••anM" * 

We may now form a field of probability if we allow three postulates to the 

properties of ^T»  Ca-H the n-tuples (a,,. .. a ) elementary events and call the 

elements of 3^   |x|,  random events.   The postulates are (1): 

I.    To each set [x| of f" there is assigned a non-negative real number 

P(|x|).   The number P(|x|) is called the probability of the event |x| 
y^-v»_ •%*•   —   T 

II.    P(Qj = P(Il|)= 1       . 

III.    If |x| 51 |y| = |xy| = |o| =0, then 

P(|x| U iy|) = P(|x + y|) = P(|x|)+P(|y|)   . 

i 



From I,  II and III and (2.3),  (2.6) and (2.11) it is not difficult to show 

P(lx'|)= 1-P(|x|) 

P(|x + y|) = P(|x|) + P(|y|) - P(|xy|) (2.14) 

P(|xy|) = P|x|(|y|)P(|x|) = P|y|(|x!)P(|y|) 

where Pi   i(|y|) is the conditional probability of the event. Jy| given the event |x|. 

The two events | x j and | y | are said to be independent if 

;      P(|xy|) = P(|x|)P(|y|)    ... :    (2.15) 

A. simple constructio/ of the above field of probabilities is had if one assigns ä 

probability to each elementary event or n-tuple (a.,.. . a ).   A generalized field 

of QTTkhaW-'M+'B- is rlofinpH hv Knlmooorov (It r».   14 ^ which would be of use if the 

above discussed probability field is extended to an infinite probability field. 

Let us consider again the state equation (i.33).   Let Us suppose that 1 

JZ.|,   |ß.| and \nP^\ are all within the same probability field for i = 0, 1, 2,.... J 

Then by (1.33) and (2.14) we have c 1 

u/Z      \~-ofip. \\T>i\y.   \\ 4- T? i „.,-t\   sll.v T&tlz... h (2-161 v  i+1'     " ZF rriT/ ~ vi—j i / • -  j zrp > orl>'' — vi^i-i I I^.A-O^ 

for i = 0, 1, 2... where P( | Z   |) is the initial condition and where PZ;(Pi) aftc* i 

PI 7* I (I   ß! I) are given for i = 0, 1, 2, 3....   Equation (2.16) is a probability 

difference equation of a general two-state descrete Markov chain.   If we treat 

(1.35) in a similar manner we obtain 

(2,17) 

where the initial condition is P(|Z ^   |) as the system of probability difference 

equations for the simple Boolean machine.   The solution of (2.17) will depend on 

the independence of the events |Z.'*"| and ^ 

(1) A.. N. Kolmogorov, op cit. 
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Ppl - iß"» zl1!,...^«-1!, Z(itl)...zfV»(!!,...»(M') 

and |Z.U'| and (j) 

Lp(j)|  =  Lß(3)  z/1)....^"-1),   Z^l.Z^J1),..^))!      ; 
'oHi iQr —j_        " '    \7l " 1 "-  •  "       1 -       1        - l 

and moreover, upon the question of statistical equilibrium.   In (2.16) if 

iiim^pdzj)., iÜ^Pjzll <l P±l > and i^L p|z.r<'opi'> exist then we say that 

equation (.2; 16) approaches a statistical equilibrium for i -*«>.   If (2,16) approaches 

a statistical equilibrium then we will have for P(JZ   |) 

p!z^!^") + p! (UJ) 
oo1 o 

Some of the mathematical answers to the questions of independence and statistical 

equilibrium of the system (?<17) will be of interest later.   The questions are 

centered around ß.•' and   p'*",  whether they are determined, i.e.,  pr' = I,  or may 

be chosen randomly: the; probiem is connected with the Constraints öf the variables 

in the system,  i.e.  constraints are necessarily imposed ih the design of counters 

which cycle on numbers other than 2 . 

Let us consider the following elementary example of the use of (2.16).   Suppose 

x. and y^ are a sequence of binary digits,  either 0 or I.   Let C. be the binary carry 

of adding numerically x-,, y.   , and C.   ,.   Let S± be the sum moduli 2 of 

X-, y- and C..   Then we have 

S. = x. © y. © Ct = x.« y.' C. + x.» y. C£ + x. y.' C.« + x- y. C± 

: 
Ci+1 = Xi *i Ci + <Xi yi')' Ci : (-2,19) 

for i = 0, 1* 2.. i where C   is the initial condition and where x. and y. are randomly 

chosen for i = Ö, 1, 2....   Equations (2.19) are the-state equations for a serial 

binary adder.-   Suppose further that the events |x*|,   |y;| and |C.| are mutually 

independent and that F( |x.J ) = P( | x |) and P( |y, |) = £(| y«, |) all i.   Then by 

(2.14) arid (2.16) it is not difficult to show that 
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•'•-in.aaW^...,.-,     J-^tn •f^ - „ n   •        -,a   ^ y-fr -v.—ai__ •fkrf...ii-£.ur>. 

and 

P(|cJ) = 
P(|xJ)P(|y«,!) 

p(kJ)P(lyJ) + P(lx,oolXP(lyLl) 

p(|6j) = P(lxJ)P(iycoi) 
/p(|rU)P(lyi0l) + P(l«J)P(lyUl) 

+ p(l*tol)P(|y^l)  
P(|xJ)P(|yJ) ;+P(ix'os|)P(|y'00|) 

T 

/<- 



. _Ü-J(-. £. „a.,t-,-n.»-ji.—...    ,>, .„f-a^i—li je n,y -;._   —g»-«   - a    .„       <r -     .,-    «•-»A ;-v.<„--„„ 

fi. 

SOME MATHEMATICAL REMARKS ON THE BOOLEAN MACHINE 

Part II 

3.     A Canonical Representation of the Simple Boolean System 

In Section 1 of Part I the system of equations for the simple Boolean system we 

snail begin with are given by (1134) of 
c 

z!«   s-fMfzJ1). Z<2>,. .. Z<N>; ^\ »(2,    _   „(Ms) f3D l+i 'ii l ii l        ' ' =     ' 

wliere fi — I.. . . I\R- ii = 0, 1, £». . . ),  imxiaiiy zj"^f = ieitner u OP i) IGF \i — i«. . * iNj 

and u', ' for (k = 1,. . . M) constitute a set of independent functions for i = 0,1^ 2,. . . 

By an evident change in notation which shows the dependence on the parameter t, 

rewrite (3.1) as 

Sj(t1+1>=fj(si(t1)iS2(t1)....S^t1)LWl(t1)1._.._WM(t1)) ' * (3.2) 

where (j = 1,. . . N),  (i = 0, 1, 2,. . . ), initially S,(tQ) = (either 0 or I) for (j = 1,. . . N) 

and W-,(t.) for (k = 1,. . . M) constitute a set of independent functions for i = 0, 1, 2,. .. 

By de Morgan's theorem (see Section 2 or [2; p. 13]) we may expand (3.2) as 

Sj(W = fj(0.. • • 0, 0; Wjft.),. . , WM(t.)) S'^t.). . . S^t.JS^) 

4. f /n.      n. Ti win.\.      w__ft.ii s_ft_\...s__ _rt.is__ft_Y 
• "j \  "i1_if JVPi'j -i*"i'- \ -j\-j":i'-j\ii' 

+ f. (o.. . . I, 0; W^t.),. . . WM(t.)) s'^t.). . . S^t.) S^(t.) +. . . + 

+ fj (i 1.1: W^t.),... WM(t.)) S-f^)... Sj^t.)Sjjttj)   k (3.3) 

[2j  Rosenbloom, P, C.    The Elements of Mathematical Logic (Dover 1950)- 
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.--fcj.vfcJ-afc-li.jVj^.^iQ^.1   , rffSiUi&nrmai ••  -ir • .rur-v •• —a*—-—*^w,-pio^a— 

Now (3.3) may be rewritten as 

where 

2N-1 
S^) =    So - (x;Wl(t.),. . .WM(t.))EX(t.) 

ctj (o^t.),. . .WM(t.)) = f. (0.. . .0,0; W^t.),.. .V^(t.) 

a. (l-.W^y,, . .WM(t.)) = f. (o,. . . 0,1; W^t.),. . .WM(t.))   ' 

a. (^W^t.).. . -WM(t.)) = f. (o,. . . I,0;W1(t.),. • -WM(t.)\ 

(3.4) 

anH 

E0(ti) = S,
1(ti)...S^_i(t.)S^<t.) 

E2(ti) = S,
1(ti)...^_1(ti)SN(ti) 

2N   1 E*   "V.) = S^t.). . . S^Cty S^t.) 

By (3.6) the E^t^'s satisfy the following property: 

S    E\t£)=I 
\=0 

c 

EV(t.) EM(t.) = 0 ii \£ ß and 

= E^(t.)     if X = ix    . 

-27- 
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T-Tifc,.,..«^-^;—:b*<a—a^aaa>«u^a—A^ a^m üfla&4Üj^M*Jatoa.«t*fltei iaaa—^^W.-'^TfT^-^.A-ii-ffi..-.».,.•^ •      »a  -'•  -*--•• •T.i.fii-W,  

By (3.4),  (3.6) and (3.7) we have 

Q t I I 
E (ti+l> = Sl<ti+l)"-SN-l(ti+l)SN(ti+l) 

2N-1 
S  a'j XiW^y.^.W^) EX(t.) 

\—u 

2N-1   ., 
2   a.  WWAt.),. 

X=0     x x   x 
.wM(tt) E^cy 

2*-l" 
^aNKJ^(t1),..^(ti)E^1) 

,2f"—i 
r   " (*i+l) s S1<W- ' • %-l<W SN<W 

ft 
«X/ £   Ä1 KjWi(ti)ii..WM(t1) EA(t.) 

\ —U c 

2N-t 
X   aN=1 XjW^t.),. , ^(t.) E^t.) 

2K-1 
X   »jj XsW1(ti),i..WM(t.) EX(t.) 

öi? 

2*U 
^i+iH   X   t/i.X;W1(t.)-..WM(t.)E?l(ti) (3.8) 

where (ß =» Ö* 1, 2,,„,2"-!), 

•28- 
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f. T..J>_^. j .. j,- a—   .g.  ,..._!• -v. ..T     - a ii pa   :o  mftfc,     .».-., -Y   J^-f;      *>.s    - , ,, rtir.f| ; , -,--,- ag. •0,0   •»     -.S.H» -,-,-aag     »   .       vy.-.-...!-- A- »     -    «•  . .»._. ._„   ..»• if fY"*      InPnn.   ^.-^.••••r 

VlpAiW^t.),. . ,WM(t.))   = a'^-.W^t.),. . .WM(t.)). . -a^i^W^t.),. . .WM(t.) 

aNVK;Wl(V"--WM(V 

-y (l.X-.W^t.),. . -W^tpj = a'^W^t.),. . -WM(t^. . .a^, jw^t.),; . .WM(t.)) 

aN^W1(t.),...WM(t.)) 

^(z^i^w.mh,, M^it\ = a,fi-jW1H,);., .w^(t..)V • ^r_i(MW,(t.)}it .%ji.\\ 
- y- I" X' *1VI~  17 •«• \ i •  a." rn.-i.-f xi—*\ *     * •»»••    - / 

^^A'"^!!^) (3*9) 

2"-I 

arid 

'g (7 MAiW^t.)^. ^(t.)). = X 

7 (o-A'.W^t.),. . .WM(t.)^ T^AJWJ^),. . .Wj^j) = 0 if <r ± »   arid 

= yffiAiW^t^. . .W^tp)    if <r = ju 

for (\ = 0, 1,2,...2N-1)    . 

The canonical form of the simple Boolean system,  given by (3.8), may be 

further expanded as 

2N-1 
E^(tm)=    J   7(^,X;0,,..Ö,0)E\ti)Wj(ti)...W^1(t1)W^(ti) 

(3.10) 

2N-1 
+    2   7(iU,X;0,...0,I)E\tpWj(t^...W^1(ti)WM(ti)+. .+ 

2^1 A, +   X   KfrUh* • .LlJ^^t.) W^t.)., -Wj^t.jW^) 
Ai—U 

H 
n 
1 
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'r?   * 1 '° ~ •    ffli irfi- irf.inii"^frri „irM 

or 

where 

and 

2N-1   2M-1 
EM(ti+1)=    S       £    (3(MA;r)E*(t.)Vr(t.) 

1+i        \=0      r=0 1 1 

ß(juA;0) = 7(/u>X;0,...0,0) 

ß(ju,\;l) = Y(M.XiO,...0,I) 

r.   ,   -M  -•        .    .  _ ptti.\t4    -1) = M,«.\:i... . . i. 1} 

t i i 

1 ' ' 

v^ = w;(t.)...w^l(ti)wM(ti) 

,2M~1, 

(3.11) 

(3.121 

V*   ^(t.) = W^t.). . ^^(t.JW^t.)     . (3.13) 

The canonical form of the simple Boolean system, given by (3.11) reduces to 

2N-1 
»N EAi(t1+1)=    2    Pte'VVVi) (M = 0,1* 2,... 2^-1) (3.14) 

where ß(/Lt;X) are constants (either 0 or I), the canonical form of the simple Boolean 

system with no < 

of the functions 

system with no external inputs, when the functions f., given by (3.2), are independent 

w^t.), w2(ti),.. .niyt.) 
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••^..^W,^, rirw ^w»»» 
• ^••1   Nlfcj. 

Let us consider (3.11) in a form which uses the summation convention of 

tensor analysis.   Let 

Mi,  \.*.\   =   TV1*  _ T»M 

then (3.11) becomes 

E^(.t.+1) = B5J;rE
X(t.) Vr(t.) (M = 0,1,. . . 2iN-l) ,N 

where 

EX(t.)EM(t.) = EM(t.) When X = p 

- n 

VS(U Vr(t.) = Vr(t.) 

••= 0 

when s = r 

when s ;£ r 

(3.15) 

and summations are on X and 7 for (*• = 0.,1|. .. Z"—1) and (7 = 0,1,... Zr"«=I). 

. We are now in a position to consider the solution of the simple Boolean system 

(3.2V or its canonical equivalent (3* 15),   By the above and (1.6) of Part I we may 

replace in (3.5) the non-exclusive "or" operation + by @, the Boolean ring sum 

operation or the exclusive "or" operation.   With this observation in mind we may 

interpret (3.15) äs a. matrix difference equation 

C(ti+1) = Bv(t.) t(t4) (3.16) 

where 

E°(ti) 

EX(t.) 

/•a.   1 -*i 

E 2*-! 
(*!>/ 
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i    ~  I 

[• 

/BSIPVr(t1).B°r V'^).. • -B°N       Vfy 

W =   K-.r^i))   = (3.17) 

2N-1    r 2N-1    r vBo;r    V(V'B        My.. 
?N   1 r. 

J N   
vr(t±y 2   -l'.r       17 

the initial condition of (3.16) ig 

B°(t0) 

•mht, s 

£<y H 

\ TIT / 

(3,18) 

and the elements of the matrices 6(1.) and B (t.) for all t». are either 0 or Ij the 

two elements which form afield F* w^h respect to (<) and + , iSomorphiC to the 

field of residue classes, modulo 2» 

The ^solution of (3.16) with the initial condition (3.18) is by induction, 

C(t£) * H B (t.) £(t) 
i=0 

(3.19) 

where 

H   Bv(tf) = Bv(t£) njt^b .. B^t.) Bv(t0) 
J 

and the products,are ordinary matrix products of matrices whose elements are 

from. F?.   The uniqueness of the solution (3,19) is evident if one considers two 

solutions which satisfy (3.16) and have the Same ihifiäl cößditiön.   TheSe two 

Solutions may fee showii to be identical for all t, by iiiduetion.   We» therefore", have' 

the following theoröriis 
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Theorem 3.1       The solution of the simple Boolean system (3.2) or its 
canonical equivalent (3.15) with initial condition (3.18) exists,  is unique and is 
given explicitly by (3.19) in the notation of (3.17). 

The facts leading to arid the statement of Theorem 3.1 give independent 
mathematical support to the conclusion reached in Part I.  section 1» that the 
simple Boolean system (3.2) may be analysed physically by ä machine consisting 

öf N-clöcked flip flops for the dependent variables and suitable physical devices 
for producing-the sums arid products of the variables 

S1(ti)JS?i(ti),.iBN(t.)iW1(ti)Ji.iWM(t.) 

for 1=0,1,2,;...   we wir! next investigate the result of Interconnecting two or 
more Simple Boolean systems* 

Let us call the simple Boolean system,  given by (3.5), E(t.) and let the system 
given by 

ntM) - ^v-(tlmtli (3.20) 

where (r, s = 0,1,... 2M^-1) and (<r = 0,1,. . . 2N-1), be called V(t.).   The systein E(t.) 

arid V(4j} are interconnected or feed into one another.   This is shown by Diagram 1. 

Diagram 1 

B(t.) 

V 
vl/ 

V^) 

If We cörilbirie (3.15) arid (3). 20), üfiÜzirig. (.3.16), we have 
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jJl' ^-^,-IU-,J^^L-2-r-, ^.^r...'-,.:„/.\^-*l bi^gfcy^w^—U&^^L, '^ au... *—riAhA •^M^äwtf^^Ä>i^toM^^,.-^,3'i^a< 

E^(t..1)Vr(t.J.,) = B\     EX(t.)Vq(t,)Cr    VS(t,)E°(t.) v l+l'      v l+l' X.;q      v r       v r    cr;s      v r      x i' 

*-.  a 

^•,aCL<E(VE  <'i> V^il^Ci» 

where ß, \ = 0,1». . . 2  —1 and f* s = 0,1,. .. 2   —1.   Suppose we let 

G°<tp =E0(t.)V0(t.) arid A° - B°    C° -a" ö0;0^0;0 

'.!i.\  - HI""/+..\'tr^#4-.'. . 1 _ ~G     —0 
~0 " "0,0 "0,0 

,2M-1 0. .<   2M-1, 
G*   -i(t.) = Eu(t.)V'*      x(t.) 

9M+N  , -N  i    ,M  , 
Ä0 ~ ^0.0     ^0,0 

2M 10 G^    (t.) = E1(ti)V
U(ti) A°-B°     C° Al.     ö0;l    0;1 

G*    +1(ti),= E
1(li)V

1(t.) A1 - B°    C1 Al " ö0;1^0;l 

?M+1  , 1 2M 1 
G"        -1(ti)=E1(t.)VZ      \) 

,M+N  , ,N  .    ,M  . 
A        ~  - R   ~ c Äl _±i0;l     ^0;1 
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ac^uwUkJ«Wafe&HMW(*wk 1 

G* i(ti) = E^      1(ti)V
U(t.) 

G* (ti) = E'i   "Vpv'lt.) 

A° -B° C° 
2M+N-1 "     2N-l;2M-l    2N-l;2M-l 

L2M+N-1 = B2N-1;2M-1C2N-1;2M-1 

*M+N   « ?N   , -M  ! 

then (3.21) maybe rewritten as 

,*r<.V» g-x. 

2M+N-1 
L2M+N-1 

,2N-1 2M-1 
B2N-i;2M-lC2N-i;2M^.l 

. Ae   „I&U 
" tci+l> = Äm" V-j/ 

/•a OD\ 

Where m, e = 0,1,2,. — x«      -ÖV  i3*LOj   'inTc   o©Ö   XflüT. til" ^\>1111\/iJ v"Ci    t^ri.iiiL/.L\^ 

Boolean systems E{t.) and V(t.) form a higher order simple Boolean system G(t.), 

given by (3.22).   By assuming that n-intereonnected simple Boolean systems form a 

simple Boolean system H (t.) Of higher order for purposes of induction,  we see by 

the above argument that H (t.) interconnected with another simple Boolean system 

A(t.) will again form a simple Boolean system H   , ,(t.) of higher order.   Thus our 

induction hypothesis is complete and we have the following theorem. 

Theorem 3.2      The system of n-interconnected simple Boolean systems of 

t. is a simple Boolean system of t. for n = 2,3,4,.. 

By (1.31) of Section 1, Part I, the equations of the clocked flip flop form a 

simple Boolean system (of two configurations).   Thereforet by Theorem 3.2 any 
-l —e   2—J. ^. L L^A 1   x ~   _„_^4-».._„4.-:^„   ID^^.1«.«»»   ^, r>,F     + ."I-l-l    **J^irv\ IF¥A0 ^w XXUXXXLJtfX    UX   XUlCi LV1U£C^ICU   LVW   vviux^uiaixvn   ijvui^aii- Djrotvuio   VJI     b«      rrüx  ^%^i**|^v*c»^ 

a simple Boolean system of t..   Combining this statement with the. statement, 

following (1.35) of Section 1 of Part I we have the following theorem. 

Theorem 3.3      T^e necessary and sufficient condition that a system of 

Boolean difference equations of one discrete parameter t. form a simple Boolean 

system is that this system may be physically represented by a machine which . Ü 
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consists only of clocked flip flops and suitable physical devices for producing the 

sums and products of the outputs of the flip flops. 

Another consequence of Theorem 3.2 is a conceptual approach to the so-called 
digital control problem.   Suppose C(t.) is a simple Boolean system whose inputs are 

from the local external world W(t) (through digitalized instruments) and that C(t.) 

delivers outputs to the local external world W(t) through digital actuators (motors, 

hydraulic pistons,  etc.).   Suppose further that W(t) has well defined laws which 
i 

are corrupted in general by a noise source N(t) from the world in the large.   Suppose 

that the laws of W(t) s action and reaction with respect to the system C(t.) may be 

^v^^„^„-;i«„i«^:   i-J^    „„•.~    J~—_„„    ^2 „ 1 „    „1 1 _    T3 iV _i_     \TTI-L    \    — 3 
ajjfffruAxiua-icu   \.v*  ouuic   ucgrcc ci   acuui'aujr   vy   ct   oiui^ic   uuujLcait ay otcui ; VY^L.j  ctliCl 

I .   " -- c 

that N(t) May be approximated by N(t.).   Diagram 2 shows the interconnections of 

C(t.),  W(t.) andNft.). 

c Diagram 2 

By Theorem 3.2 we may regard the total system comprising C(t.), W(t.), N(t.) and 
c 

their interconnections as a simple Boolean system.   Theoretically this system has 
a solution as was demonstrated by (3.19).   In the next section a further understand- 
ing of this system will be obtained by the use of probability theory. 

mu._   u-.i.«^._ — —_L    _J? -I.' ine «laiivuviaii iiaiuic \JL uic sxmpxc Duwieaii ssyssitrni 

By the rules of probability, given by I, II, III, (2.14) and (2.15) of Section 2, 
Part I, we have for the simple Boolean system by (3.15) and (3.16)? 

d^l+l'!) =<rP^El'Vvr(ti> 

^;rPliE"^l/PlE\ti)|([^Vi) 
-36- 
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M for (ß,\ = 0,1,...2N-1) and (r = 0, l,2,...2iVi-l) where b£.r = the integer 1 X;r 

when B^.^ = I and 0 when B^<T, -0 (this assumes that B^,r for each triplet (\.ju>r) 
V.r '\;r 

is either the constant I or 0 for all t.).   If we assume the conditional probabilities 

' P|E\tl)|(l
Vr<yi 

are known and construct the matrices 

/ P (lA)!) I 
pflE^j) 

.e(t.) = 
I 

:^2N_1.:   _A/: 

and 

P (|-E p"   '(t.yi; 

'<rP|Eo(tl,|(l^'l)-;-bk1;/!E2N.1(tii|(l^i) 

T rt.) 

2N-1 

V&lpiA»i jv^ -bS^ v-v». ^ B-      C*£> I 

then (4.1) becomes the matrix equation 

e(ti+1) = Tv(ti)e(ti) 

(i = 0,1,2,...) with the assumed initial condition, 

(4.2) 

(4.3) 

1 
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e(y. 

ffTr 
•Mhäuähirt •JhTSr.Ji. J.A*- , b^uiOu 

p(|E°<yl) 

V„>l) P    E 

(JE2-1«^) j) 

jLxic unique suxUxiuii oi (^t.j) is easny snown to oe 

iJ^tiai iwUH^nuMMntriMwbali. ««•MMttb 

£ -     ! 

eoc.; =   ii   1^1.) eft ) 
x      j=0 

{4,4) 

If the conditional probabilities P   . (|Vr(t.)|)   are the same for all t., then 
|E~(t±) 

Tv=W = W = -   • 
With (4.5) the solution (4.4) may be expressed as 

e<V = V<y 

(4.5) 

(4,6) 

where fv is the i*th power of the matrix Ty.   If the events | Vr(t.) j are independent 

 ff 1_ *.      I *r« /> * x,    ».. i -i.*  ux eraUII evtsiic  jm   V^/j»   Txien 

V«iiHvi)-pHvJ lE^Ct.) 
(4.7) 

for (i = 0,1,2....).   If (4.7) is true* then the simple Boolean system E(t.) is said to 

be independent of its input system V(t.).   If the system Eft^ has no input system 
V(t.), then 
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T   = T 
V 

(4.8) 

where T is a matrix whose elements are either the integer 1 or 0.   (4.8) is the case 

of the simple Boolean system (3.14) with no external inputs. 

Let us consider the system of Diagram 2.   The system of Boolean difference 

equations for C(t.) and W(t.) with input N(t.) will be 

C^i+l) = <-,q
C\^%) (4.9) 

and. 
I II»     UU (I.I .I'M It I 

b".s»p~Vi' "   *"i'~  VT' 

for (A,^.Sr = 0,-.l(....-2
N^L), £q-.x:s = Q;ls = = = 2

M-l) and (p = 0sl,s,.2
r-l.).   If we combine 

systems C(t^) and W(t^) as in (3.21) we obtain 

C^ti+1)Wr(ti+1) = jtsK^pN^VcNtpW^t.) (4.10); 

The total system (4.10) of C(ti), W(ti) and N^) may be put,  using the argument 

preceding (3.22), in the form of system (3.22).   Then we have 

UVi+1) = DiJi[N
P(ti)]U

m(t.) «(4.11) 

where the initial condition is Um(t ), the matrix D    fNp(t.)] denotes the functional 

dependence of the elements of the matrix on Np(t.) for (p = 0,1,...2 —1) and 

m,i = 0,1,2,...2        -I).   Let us suppose that the approximate noise source N(tt.) 

is unaffected by the system. U(t.).   That is, the events |Np(t.)| are independent of 

jU   (t.) j all p and m.   Moreover, let 

P(|NP|) = P(|Np(to)|) = P(|Np(t.)|) = ... 

for (p = 0,1,...2 ).   Then as in (4.1), using (4.7), we obtain from (4.11), 

p(|u£(ti+1)i) = d^[p(|NpD] n\^ (\)\) (4.12) 

H 

I* 

1 
> i 

t,. 

Ü 
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for (£m = 0,1,...2M+:N-1) where for each 4 and m   d^[P(|Npj)] is either 0 or a 

partial sum of the probabilities P(|NP|) for (p = 0,l,...2r-l) and the initial condition 

is chosen to be P(|Um(t )|).   We may rewrite (4.12) in the form of (4.3) or as the 

matrix equation 

"(W ta % u«i> (4,13) 

where the initial condition is U(t ), 

/  pfitnto!) \ 

pdu^t.)!) 

U(U = 

p(|u2    ",1ft1)|y/- 

i = 0,1,2,,..) and 

/        <![P<|NH>].-. <*°M+N     [P(|N"|fl 
2"i,*\-l 

•% 

,M+N 
'[pdNPD] ... d 

2M+N__1 

2M+N_1 
[P(|Np|)l 

By (4.5) and (4.6) equation (4.13) has the solution 

U(t.) = 4u(to) (4.14) 

for (i = 0,1,2,3...).   From (4.14) we have obtained P(|U*(t-5(); for (1 = 0,1,..«2        -I) 

_   -»  .,ff. 

and (i = 0,1,4..*) or f{\w \tg vFxt-j\) iwr-ü* = u,x... 
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(i = 0,1,2,...).   Since 

2M-1 
cMrt.) a cM{t.) i = c^t.)   Y   wrrt.* 

2M-I 

r=0 

=    2    CM(t.)Wr(t.) 
r=0 

w-nere 

[CM(t.) Wr(t.)]  [C^tj) Ws(t.)] =0      if r £ s     and 

= CM(t.) W^t.)     if   M = s, 

we have by (2.14) of Part I: 

In a/similar fashion we obtain 

2N-1 

From (2.14) of Part I we have 

From (4.15), (4.16) and (4.19) we obtain 

-  -        Pdd^w^fy 
|C^(t.)[ /-        2""-l 1 Y   FdC^UW^Uf) 

s=0 x • 

J 

P(| C^(t.)|) =     £   P(|C^t)Wr(t)|). (4.15) 
1 r==0 A 

P(|Wr(t.)|)=   £   Pd^U^tpl)       • (4.16) 

P(| d*(t.) Wr(t.)J) = P (| Wr(t.)|) P(| C^(t.)|) 
1 1 lCM(t.)J 

= P,    r     r([C
M(ti)i)P<lWl<ti>l>   ' (447) 

|Wr(t£)| 

and 
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CP(1 C^(t ) W^t )1) 
P    r      ,l\C%)\) = -ü ' "  (4-18) 

| Wr(t.) | x 2^-1 
S P(|c°(t)wr(t)|) 

<r=0 * X 

as the conditional probabilities,  relating the configurations of C(t.) and W(t.) of 

Diagram 2 at t^»  in terms of the probabilities of the total system 

:       ' '     PClE^t.) V%)\h 

obtained as the solution of (4.13)* 

It is possible to utilize the methods* leädiiiä to /4.1§\. to obtain «"-Sbäbi-litiBS 

^.i.^i«*'  P;^ j|wS(t4,,)|),     etc, 
[WJl^Jl |W-Fi}| 

"i+.V 

*.»v*#    v»*vv*      liiii-—~      
-JP    Al- --. 

S    Miici.3v2   v/x    Lire    t/jruuiciii   «X    Vile    JJi CÖGIIL   XXlIie S        WC   HELVS    &X1GWX1   DV   l4-l5"l * - — _•/*""/ 

that the very general Simple Boolean sygteffi,-  given by Diagram 2,  is a discrete 

Markov chain or process, where the t-KSngition ^probabilities are constants for ail 
c - 

t^V  Since the literature is prevalent with studies of such chains, it is expected 
that the probability approach to the Boolean system will lead to new and possibly 

practical results in the subject of digital computers.   For the remainder of this 
Section we will discuss briefly the solution of Markov chains by matrices of 
generating functions. 

The matrix Solutions (4.6) and (4.i4) aris^ from a matrix equation of the form 

U(t.+1) = PU(t.) (4.19) 

where the initial condition is U(t ), 

/ Pll,PlZ. 

P = 

P2i,P22, 

\ 

for' (jvfe = i,,.-..M)V 

Y%i,'"* 
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U(t.)= 

M 

3=1   J 
•*.-     CLiAv«    j.- 

3k 

torLj.k = 1^.,M), 

*f he unique solution of (4.19) is 

ycy-p1^) 

lA    3(1\ 

(4.21) 

for (1 = OV172V. V). -- 

Our purpose will be to discuss briefly another representation of P   and its value 

for large values of i. c 

Now U(t.) may be considered as a vector in the M-dimensional complex column 

vector space CM,  composed of elements 

x. 

X 5: (4.22) 

W 
•where x- are complex numbers.   Let üs introduce a norm of x in (4.22) as 

W = 2 Nil 
i=l     * 

(4.23) 

11 

H 
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With ||x|| defined by (4.23),  it is not difficult to show 

ll* + y||« II'II + lly|| 
and 

||ax||  =   |a|   ||x|| (4.24) 

where x, y tCM and a is a complex number.   Let us define the norm of an M X M 

matrix A*  whose elements are complex numbers as 

|| A || =    Sup   || Ax || (4*25) 
II x ||,-1 - 

Where x CCM and 

„Sap   iJAxJi 
|x|| = l; 

is the least upper bound ö'f supremum of j| Axjj for x on the Unit "sphere" of 

||x|| = 1.   From (4.24) and (4.25) we have for the M X M matrices A and B, 

II Ax IK INI   ||x|| , 

_Jfr + *^_*\*A i\\d\\   , ........ 
||AB|| « i|A||   IIB 1| and 

||dB|| = |a|   ||B||: (4.26r 

where a is a complex number.   Let us call an M X M matrix with property 

(4.20) ä Markov matrix. 

Let P = (p.,) be an (M X M)-Markov matrix and x £CM such that ||x|| = 1. 

Then 

MM MM MM M 
UP«II = 2 IS*»«*.!    2 SP^W = 2 kl .2Pit = 2 W = M s i ••   (4-27> 

i=l j=l 13  3      i=l j=l   1J    3      j=l     J i=l   13,    j=l     J 

Moreover, if x is such that 

- M 
^) x. = 1 with x. ^-0 

i=l    *    ' i 

M   M M  M MM M = 
II PX» = 2 I2P«*J = 2 £ Pii^ = X*i .2**.« 2*. = |(xfi = i (4<m 1=1 j~i XJ  J      !=lj=l  A3

  
3    j=l  «»i=l  XJ    3=1   J 
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By (4.27), :(4.28) and (4.25) we thus have 

||P || = 1 (4.29) 

when P is a Markov matrix.   Suppose Q = (q,.) is another (M x M)-Markov matrix, 

then the elements of PQ are 

M 

J/^w " 
for (i,j = l,2,i..M)j  and y 

MM M 
X ( Z p.,, QT..) = X qt-i = i 
i=i k=l   ~~  ""      k=i   "" 

for (j = li.LM), 

Thus (4.20) is satisfied and PQ is a Markov matrix.   By '(4.29) we therefore have 

i = IIPQII = I|P|| IIQII.   • (4.30) 
c 

The generalization of (4.30) to any number of products of Markov matrices is 
clearly evident.    ~-- ----- 

Let us now consider the series 

1 + Z plsl        • " (4-31) 

where P is a Markov matrix and s is a complex variable.   For (4.31) we have by 
(4.26) and (4.30) 

Bi+ fpVli   i + Z IIP1« IB'I
1
- Z iBl^rtr for H<i. (4.32) 

i=l i=l i=b L-\s\ 
c c 

ft/Eo'TAtOTio?.   ih« mszLrtix c^rioc £/L.X\\ ca^iafiao •&**» iv<«i4«i;w AW^U;*-; 

X(I - sP) = I    . 

By (4.32) we have that (4.31) exists for [s[ < 1 and as a consequence by the preceding 
seiitence we have finally 

r 

f 
j 

i=I ' 
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Now from matrix theory we know 

(I - sP)-1 = -1  Adj(I - sP) * —^    fgi.(s))  = (£„(8)) 
|l-sP| |I-BP| 

l   3    '     V  J    ; 
(4.34) 

where Adj(I - sP) is the adjoint of the matrix I - sP or the matrix of (M - 1)-order 
cofactorS öf I - sP and |l *- sP| is the determinant of t - SP. By definition we have 

that g.a(s) and |l - sp| are polynomials Of s such that the degree of g^(s) is less 

than the degree of 11 - SP | or 

äeg[gi;j(s)}s; deg[|l - Sp| ] - 1    . (4,35) 

Let us Suppose that the roots öf |i - SP [ are a,, ä^t >*•>ci-sj Of orders m^ iri^, ... m. 

respectively*   From (4.34) this id equivalent to the statement that fWs) for 
J 

N* 

(L i = l.Z.mM) are rational fractions With possible pöleS ät d,$ 4a» ."-a-** öf orders 
IN 

of at most m,, m,, ..^m,-} respectively*   From (4.33) arid (4434) we häVö 

f.hvli.= i. .•"....:m. 

\*t\ *i 

Ü-plane 

1 » 
fit 



Let us consider Diagram 2,   The double path from a to b in the complex U-plane 
is such that it does not cut across any pole a..   The path:  a to b; around C,  clock- 

wise»  to b; b to a;  around   r,  counterclockwise to ä:  is a closed counterclockwise 
path,  call it A*  which contains all the poles of ^(s) for (i, 3 = i, ...M).   Thus for 

I s I < r we chave 

c 

(i, j = 1, ... M) Where C     are small circles about du such that no two of these circles 
ak K 

Bveriap or intersect with r , G öf the path ff öih ä tö b?   Since the Hne integrals of 
c   f..(u)/s - u from ä to b 'and from b to ä Cancel, we have xr 

l-A,   -0^7V 1 f%i^U> 1 f fii(Ü) 1      ffii(U> 

-^ J* J/C 
c . 

for j-s I < r.   By (4.35) f..(u)/s - u has no pole at infinity and consequently no poles 

outside C.   By Cauchy's theorem we then have 

JC 
and 

1   ffii(u) • 1 _ü! du = 0 2vx \ s - u 

i rfü(u) 
7^7       3   - du = f..(s) Ziri I  s — u i^jv  ' 

rr 
which,  combined With (4.36) and (4,37), give finally 

fij<S> = X  2» /cr-stü *» (4.38) k=i 

for fsf < r. 

From (4.38) We obtain 
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a'-" 
'-^-^—^^^^^%.fi« 

f„(.) !• i r fi.i(u>, du = 
N 

-s 
k=l 

_L f Vu> 
*> ^,*    1 r;  £(4) 

i=0,w' 
du 

--2 
i=0 

N 

k=l «' Ziri 

f..(u) 

.i+1 u 
uk 

since  Is I < lui.   From (4.39) the coefficient of s   is 

s  i fVu)
H  . &  i Z1 

- X    5~T   / —fer- du = -  X   5^  / 
EH ~• /'    u*r* kFl  •",~ -' 

=  J ak 
^C 

~~ JXT ~ 
U 

dü 
/ , . —       \ *•*••* • 

(4.39)= 

But f..(u)(u -a,)    1u is regular within the circle C    since the order of pole 

an ^^ü(ü) ^ it most in.ZlThus if Aste use thelCäuchyJntegrai formula for the 

n-th derative, we obtain 

N    ^  f^u) 

~ .2/,   2iri 1        i+1 k=l        Jc   u 
a, 

f..(u) N 
du = - -S 

k 

d   k—1 
fij(u)(u^a

k)   k 

H <HW!    (duT^ljL ui+1 

-» u=a. 

(4.40) 

Combining (4.33), (4.34),  (4.39) and (4.40) we obtain finally 

N 

p'—Z -!  (m k=l k-l>   j 
dmk-.l 

(du)mk-l 

(u-a,)    k 

Jl-uPJ u' 
^l Adj(I - uP) 

u=a,_ 
K. 

(4.41) 

where the derivative of a matrix of functions is the matrix of the derivatives of 

the functions.; 

Another interpretation of the roots a. of |l — sP| is that they are thg values 

of s (the proper values) for which the vector equations 

x = sPx and        y = syP 

J. 
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have non-trivial solutions (solutions other than the zero vector) where y is an 

M-columned row vector.   Since the row vector 

yI= (I.I....1) (4-42) 

satisfies 

y = yP   . 

it is immediately evident that s = 1 is always one of the roots cu.,  say a^, when 

P is a Markov matr.x.   Any other roots of 11 - sP | of modulus one would 

If s = 1 is a first order root of |l - sP|, then the linear manifold generated 

J5y tils solutions OI y — yf s '-' 2.S one u..uiiieiiöA«i***"i «vu** wt? M.O.Y mivc LUG I«W VGU-MJJ. 

yT of (4.42) as the basic vector.   Every element, of this linear manifold will be of 

the form ay, wheie a is a complex number.   From (4.34) we have 

/ _ _ — \ 

fl - sP| I = f X  gq (s) [6jk- sp.JJ      ,        (X k = r,...M) 

or 

where 6.,  = 0 when j ^ k and = 1 when j = k and 

iav iA. A/I\ mo coo +.v»a.t <»_ JA a solution to v — vP = ft, hence 

gi = akyI (i=l*-.-M) 

where cu   are complex numbers and as a consequence 

gi(l) = gi(i) = -.-g^ < (4-44) 

(i= 1....M). 
-49- 
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If all the poles of l/|l - sP| are of first order,  then (4.41) becomes (compare [3]) 

P3=- 
N 
2 

k=l a 3+1 T- |l-uP 

N 
Adj(I - akP) = -  £ 

1 

u=a,_ 
K 

k=l -j+l d 
du i'-<*i]u.£ (&h$ 

N 
-X ei 4+1 Ak (4.45) 

where a, = 1.   By (4.44) it is evident that the elements of any given row of A> are 

equal.   If |afc|   >1 for (k = 2....M), then 

.lim P3 A, (4,46) 

~1 

2 N a, = 1, a^ = w, a^-di  „...a^ = w   —1 

where u is an N-th root of unity, then 

N 

since 

lim 
N->-«> 

v a! 
A N =    lira 

N< 

a — et _N+1 

(l-a)N * 0 

(4,47) 

where a is an N-th root of unity, not equal to one.   We shall use (4.45), (4.46) and 

(4.47) in the next section.   In this section we have shown the Markoviatt nature of 

the Boolean system.   We have discussed briefly some elementary notions about 

discrete jvEärKöv chains.   We hope iö reXxfie öür rnetxiou» wim iüriiicff e=xSuör'atiöii 

in a later report. 

[3 j Feller, W„ Probability Theory and its Applications (John Wiley 1950). 
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5.     The Trinary Counter 

Before we consider the trinary counter,  let us consider briefly examples of 

physical devices which produce the sum arid product Of two Boolean functions of 
time and solve the flip-flop equation (1.14) of Part I.   There are two schemes for 
producing gumg and pröduütg Of Boolean functions with unidirectional current 
devices*   Scheme I is Well known and digeugged elgeWhere [4] *   Scheme II hag 
been used for clipping voltages in väriöüg electronic circuitg, but to thig author's 
knowledge) it häg not been considered seriöügly äs ä meärig of producing logical 
SLUriis arid products öf two valued voltage functions in a eolnbüter"* 

Let Ug güppose that the two pöggibie VälUeg of the Boolean time function A(t) 

are two voltage levels«  säy B^. äiid E=   Wfigre E~r ^ ii, -.   Then we have I = HTT 

,vs have A(t) and B(t) öf the same nature then A(t) + B(t) and 

Ä(t) B(t);mäy be Obtained by either of the two gehernes,  given iii Diagram 3,  with 
aiönes whe*e B^ Jn and V * ET. i   The output veltage in Diägßam 3 mav be obtained -v      -  

Diagram 3 

Hi 

2jC 

a 
A(fJ 

B+ 

1 

B(t) 

•Scheme I 

Q 

S£ 

-t> A(.t)B(t) 

^L 

-t> A(t) + B(t) 

[4]   Spr'agü'ev RvEv,> Tec;hxilq[öes in 'i-ne £>esign vi uigii&l KSottipui&fSr 
pregerited ät Äögociatiöö öf Computing; Machinery (March 1951J«. 

a, fay* 
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Diagram 3 (cont* \ 

Scheme II 

Aft) o—* 
A(t) 

^>A(t)B(t)      o——k 4> A(.t) + Bft) 

« 
j --- 
1 

B(t) 
o 

B(t) 

A(t) B(t) = EL + 
A(f)-B^|   |B(t)-Ek 

EH ~ EL "    ' ' 

and 

A(t) +-B(t) = EH. 
E H A(t)      EH-B(t) 

^U-^h 
(5.1) 

where on the right + and - are addition and subtraction signs between real numbers. 

The terms on the right of (5.1) may be taken äs the definitions of the "and" and "or" 
operations on the left.   In this case one may use the rules of elementary algebra to 
obtain the output voltages of a diode net,c composed of trees or chains of the circuits 
of Diagram 3. 

If the voltages A(t) and B(t) are replaced fey two arbitrary voltage signals f(t) 

and g(,t) such that c 

V^ä -f/'-fl'-    rsii\ 4 nx 

II 

J 
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then the output of the  "and"  gates,  given in Diagram 3,  will be Min   tf(t), g(tj) 

and the output of the  "or"  gates will be Max (f(t), g(t)j .   If we let 

[fAg](t) = Min (f(t),g(t)) 

and 
[fvg](t) = Max   (f(t),g(t)) 

for t contained in some range R, it is known that the class of continuous functions 
from a distributive lattice under v and A,  a partially ordered set with an upper i 

and lower bound,- satisfying the dual distributive lawsi ^ 
1 

(f A g) v h = (f V h> A (g v h) ; -.!."=; 

(f vg)     h = (fAh) V(gAh)i     . 
This fäei iziäy foe useful in tli6 study of nOii-liiiewEr difcuii analysis* % 

'•* 

Let us now consider the ideal flip-flop equation (1.14) of Part I 

X(t) = b(t)X(t-) +0b(t)XCt)    ,- (5.2) j 

>-- . |) 
where b(t) and -b(t) areupspike B -functions. > 

Equation (5.2) is equivalent to : 

X(t) = b(t)X(t-) +  b(t).X(t)      . (5.3) 1 

If we let 

then (5.3) becomes 

o 

X(t) = S(t),b(t) = ß(t),ob(t)--=oß(t) I 

i .{ 
g(±\ = ß£tVSft-\ +    BLUSLt-) (5.4) ,1 -\-r i   » - w  — v        r O' 

where ß(t) and    ß(t) are downspike B -functions.   Equation (5.4) is the same form 

as the ideal flip-flop equation (5.2), but with its two B-function inputs ß(t) and 

ß(t) as downspike functions.   We will identify a downspike B -function with c train 

of negative pulses, and the Upspike B-function with a train of positive pulses. 
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i if i 

The flip-flop circuit,  given in Diagram 4 will approximately analyse (5.4) 

where  ß(t) and    ß(t) are a train of negative pulses (approximate in the sense 

that a pulse is never of zero width in duration and that a flip flop cannot be 
triggered in zero time). - 

Diagram 4 

S(t) 

0P^   ö- 

t> S(t) 

»7.+-V. O f-vv 

Bias 

The circuit given in Diagram 5 where a(t) is a B /,(o)-function produces approximately 

i < 

t        t 

[a_a(t)J    = a(t-) + a(t) 

or negative pulses at the down jump points öf d(t) (the pulses are negative with 
respect to the Bias voltage).   If E(t) is the clock function,  defined in Definition 1.8 
of Part I, then by the reasoning, leading to Theorem 1.7 of Part I,  Diagrams 3,4 and 5 
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Diagram 5 

a(t)o- ¥r ->ß(t)^a(t-) +a(t) =  [d_a(t)J 

Centering 
Voltage Bias 

wie uixsruii ui juÄLctgicuii u Wxii wuaxyse wie uixiei'eiice equation 

S(t + T) = a(t) Sft) + _a(t) Sit) (5.3) 

where a(t) and ^a(t) are BJo^-functions.   It will be convenient for our purposes to 

Dia sram 6 

Center 
Voltage 

Q B+ 
< i 

Center 
Voltage 

Bias 

regard the flip flop of Diagram 6 as a box with'two inputs, a(t) = a(t)E(t) and 

a(i) =  a(t-)-E(t) and two outputs, S(t) and S(t).   This representation is shown in 

Diagram 7.   There are other circuits and devices which may be used to analyse 
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Diagram 7 

a(t) =   a(t)E(t)     o 

a{t) = a(t) E(t)     o 

£>S(t) 

*>3(t) 

(5.3) other than the flip flop shown in Diagram 6.   However, it will riot be our 

present purpose to give this further attention. 

Let us now consider the design of a trinäry counter.   Following the notation 

E f*i) = si(%) s^cy 

E
1
^) = s'^y s2(t.) 

EZ(t.) = S1(t.)'S2(ti) 

E^t.) = S^t.) S2(ti) (5.4) 

Let B(t.) be the function of ^ that is to be counted.   If B^) * I and E (tj) = I 

or E3(t£) = I, then let E°(ti+1) = IKE
1
^),   E2(ti+3) = I. ^1+4) = r etc- 

1 z 
until Bft.) s Q sssa« i > i-   « sftji = 1 and E -(±A =s I. then let EÜL,,) = I, y *i' J        "    ~"      v-i' —   vx'      —    ^-  —   ' irr 

E1(ti 3):= I etc. until B(t.) = 0 some j> i.   H-B(tf) a I and E (f.) = 1, theri 

let E^t^) = I, E2(ti+2) * I, EÖ!(ti+3) = I, B-Ct^) = I etc,   until oB(t£) * 0 
; o c 

some j > i.   If Btt.) - 0, let E^t.) =, B°(tirfl), E%.) = E1^^, E2(t.) * JS2^) 

and E (t.) =• E (t.  ,).   It is clear that these conditions are the conditions for a 
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counter which counts when B(t.) = I,  cycles on three when counting and stops count- 

ing when B(t.) = 0.   Table 3 shows the operation of this counter more explicitly. 

Table 3 

c E°(ti+1) E1<W E2(ti+i) E3(t.+1) 

E0^) n%) I Ö D 0 

EäVt.) B*(t.) 0 I 0 0 

E2(t.) B^t.) 0 Ö i 0 

E3^) Bl(tj) 0 0 I 

E°(t.) B(t.) Ö I 0 0 

E1^) Bft.) 0 0 = i 0 
c 

E^t.) B(t.) I 0 0 0 

E3(t ) BfU 
1 

Ö c 0, 0 

From Table 3 and the preceding discussion the canonical form of the trinary 

counter is 

E°(ti+1) = |E2(t.) + E?(t.)| B^) + B°(tf)B
1(t1) 

E1(ti+1) = E0(t.)B(t.)+Ei(t.)B1(ti) 

^2(ti+1) = a^y B(t.) +c E
2(t.) BV.) 

ti\+1UB\)*\)       . (5.5. 

By (5.-5) We' have' 

-57- 



fV     ...  •38ff3T>   ••£    -S.    ~,.~ •.., i""     y»-- .v     g -i—" ft   'i     ""-'   .' 

E°(t.) +E1(t.) = 8^.) 

E°(t.) + E2(t.) = S2(t.) 

E°(t.) + E3(t.) = Sj(t.) S2(t.) + S^t.) S2(t.) 

E^t.) + E2(t.) = sx(t.) s2(t.) + s^y S2(t.) 

E^t.) r E3(t.) = S2(t.) 

E2(t.) + E3(t.) = S,(t.) 
i 1* JL J. 

If we combine (5.5) and (5.6),  we obtain 

s2(ti+1) = [Sj(t.) B(t.)] s^y + fiVy &2(y 

Sx(t.) - [S2(t.) B(t.)] Sj(t.) + B^t.) S^t..).     . 

The equations of (5.7) are in the form of (5.3) where t. (i = 0, 1» 2S..) are-the 
down jump points of the clock function E(t).   The equations of (5,7)= are 
clearly equivalent to 

S2(ti+1) = [S^t.) S2(tf) B(t.)] S2(t.) + [S2(t.) B(t.)] ' S2(t.) 

Sx(ti+1) = [Sj(t.) S2(t.) B(t.)] Sj(t.) + [S^t.) B(t.)]S S^t.)      . 

The redundancy in (5.8) is imposed for the practical purpose of insuring the 
triggering of the flip flop when a(t) = ,a(t) = I, so.ne t. 

By (5.3), (5.8) and Diagram 6 we will need two flip flops S,  and S7 with 

respective inputs «^(t), 0äj(t) and a2(t),   öa2(t) where 

aj(t) = Sj(t.) S2(t.) B(t)        ,       oai(t) = Sj(t) B(t) 

c a2(i) = gj(t) S2(t) B(t) \       0a?(t) = S2(t) B(t)       . 

I ^* —ti • \    — / 

(5,7) 

(5.8) 

(5.9) 
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By (5.9) the a.(t),    a.(t)  and   a_(t)  inputs,  as defined by Diagram 7,  are 

ax(t) = Sjtt) S2(t) B(t) E(t)        ,       ^(t) = S^t) B(t) E(t) 

a2(t) = Sj(t) S2(t) B(t) E(t) oa2(t) = S2(t) B(t) E(t) (5.10) 

After a consideration of Diagrams 3 and 7 and (5.10) one sees that Diagram 8 

represents the circuit diagram of the above discussed trinary counter or the 

physical device which will analyse the equation of (5.8). 

Diagram 8 

o^t)   o 

a.(t)   O 

->S\(i) 0
a2^   °~ 

t>Sx(t) aE(t)   o- 

->s2CtX 

-OÖ2^< 

B+ 
B+ B+ 

B+ 

B+ 

fc^t) 

S\(t)    S2(t) 

-i>0^(t) 

id. 

öS^t) 

,oa2^-^- 

-i>a2(t> 

±£- 

T       "5" 
B(t)        B(t) 

S7(t) 

Si(t) 

The method we have used to obtain the design of Diagram 8 iö not ne.cessär: 

the most efficient design technique.   We have used this method because it Shows 
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most clearly the nature of a Boolean system.   A study of design techniques will be 

given at a later date. 

Let us suppose the probabilities, 

TP(\~R(tA h = n 
"~    \ I   — \  " 1 /   I / IT 

rs.in 

for (i = 0,1,2...) and 

q= i 

and that the event |B(t^)| is independent of. E (t..),   E (L),   E (iji   and E (tp 

for (i = 0,1,2....).   By (4.1) and (3.11) wie ihen have    c 

/ P(|B (ti+1)i) \     iqoppi     /P(|B (t.)|)\ 

pflH^t.ih —   VI—    v"-j/i/ 

e(ti+1)'= 
n ri o o x-    -a   ^    — 

o'Ddö ;P(|B2(t,)l) 

3 

= Te(t.) 
P/lEtt. ..\\\ 
_   A|—      x  ••TJ--I-/-I/ 

p(|E2(t,.^h 

\P(|E'3(ti+i)|)|      \o ööq|;  \p(|E3(t.)|) 

for (i = 0,1,2,...), where the initial condition is dhosen to be e(t. ),  as the Markov 

chain for the trihary counter of Diagram 8.   Now the matrix,  corresponding to 

(4,39)>  will be by (BÄ2), 

-1 

(I - sT) 
-1 

1 - sq      0 - sp      - sp 

- sp   1 - sq      0 0 

0 0 1 - sq      0 

0 0 1 - sq 

II- ST 

11 * Stti3,   täo^ll - SdL   LanMl - sriY2.   LtOztft - Ha\2 
-*/     -      \— tr r    . v ~Xf '        V-JC~ / V --*•/     '     v—x-/\- 

(sp)(l - sq)2,       (1 - sq)3 , (sp)2(l - sq), (sp)2(l - sq) 

(sp)2(i - sq), (sp)(l - sq)2,     (1 - sq)3 

, (.1 - Sq()3-(sp)3 (5,13) 

A- 
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where jl - sT| is the determinant of I - sT,  given by 

I-sTJ  = (1-sq) [{1 -Sq)3-(sp)3] (5.14) 

The roots of 11 - sT j are 

a, = I,  a- = -,  a, = "- \    ~—3)—x/v   AQ 1 an(j a 1 2      q       3 _.   3 .     3< 4 - 2(p   + q ) 

(l~3q)--i>/'3(q + l) 
3 3" (5.15) 

^^TT"     Tf   1   >  n  > 0     +V»or»    c;     >   1    bnr) -.     ^ n        _,    _„„„   „2        _      

l-sl - *4-i • *•+** e > *       1 - 3q + Sq* 

Thus ct1 

ohtäin 

= 1 is the only root on the unit circle |s | = 1.   By (4.45) and (5*13) we 

A, 1_ 
3 (5.16) 

as the matrix associated with the root a. = 1.   Combining (5.16) with (4.46) we 

have 

1   1  1   V 

,. ..1111 
lim   T1 - A    - ^ I j — oo   l   " Al " 3 I 1   1   1   I 

c      \6 0 0  0/ 

arid thus by (5,lZ) we obtain 

lim ; P(iuj(t.)|) = P(\%h*>)\) = j     for (j ^ o,i,2) and 

Jf2 pfäftts * p(\A^ = & (5.17) 
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By (5.17) and (5.6) in conjunction with the rules of probability we have finally 

PdS^oo)!) = P(|S2(oo)|) = | 

and 
pds^j^pds^oo)^! 

as would be expectt 1 intuitively. 

If PdBVi)!) - q = 0 for (i = 0,1,2,...)/ then the matrix T„ of (5.12) becomes 

/o 0 1  l\ 
I      II     II     II 

^ 1 =    0   1  0  0 
/ 

(5.18) 

and 

with roots 

\ r\    n    r\     n / 
\U    U    V    U/ 

|i-aT,^-(i-ri?) 

a.. = 1,   a, = e 2iir/3 
s3 = e 

4i.Tr/3 

the cube roots of unity.   It is not difficult to show in this case by (4.45) that 

A i l i\ 

N   T^ L [1   1   1   1 
Urn   2,   N   = Ai ~ 3    1   1   1   1 

N-KO]=1 I 
\0 0 0 0/ 

thereby demonstrating the Validity of (4.47).    (5.19) also follows directly from 
(5*18) by iiiUitipxieätiöii and suinining by noticing that 

(5.19) 

•Xi. = Tj    if n = 1   Mod 3 
••i- I 
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0   100 

,n = | 0 0 1 1 

10 0 0 

0 0 0 o/ 

-:*  ^ = •>    T\/T.->.~! % 

rrrn - xl   ~ if n = 0   Mod 3 

A 0 0 o\ - 
^0   10  0* 

0  0   11 

\p  0  0  0/ 

A further study of matrices of the above type will be made in a later report.   One 

should notice that if p = 0, then the matrix T of (5.12) becomes I, the identity 

matrix.   This corresponds cto the counter locking on its initial configuration. 

probabilities of B (o) functions and the current drain and the power consumed in 

I 

,»1^.. -_ -«.I. ^•7-1. Avfc. T.T.A.A.A.    _    T7S J_.fi      A      _   ,!S an "ana   fare,   ueT  V{AJ = £;„   ii ä"= x auia   v-^} = JSJ    x* n - o 

Diagram 9 

B+ = D 

R 

AB 

JS<L 

Ö 

A 
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Table 4 

V(A) V(B) V(AB) Current through R Voltage across R Power 

EL EL EL D - EL/R D-ET 
(D-E,/ 

R 

EL 

XX 

EH EL D - EL/R D-EL 
(D-EL)2 

R 

• E- 
j—t 

D - E_ /R D-E. - • 

(D-EL)2 

R 

EH 
T!' EH D-ELAi D-EH 

2 

R 

By Diagram 9 and Table 4 we have 

J- (D-E„r                   (D-ET)" 
Average power dissipated by  R = -—R P(1AB1) + R  -     [l - P(|ABl)] 

D-E D-E, 
Average current through  R =      R—— P(AB) + ~  R   L  [} - P(!AB[)J 

A similar result can be obtained for the "or" gate. The study of the Boolean 
machine as a Markov chain thereby appears to be of practical significance in 
the design problems of these machines. 
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